A consensus-based global optimization method for high dimensional machine learning problems

Yuhua Zhu

Joint work with Jose Carrilo, Shi Jin, Lei Li
Oct 22, 2019

Motivations

Numerical experiments

The Model and algorithm

Numerical experiments

$$
\text { Goal: find } x^{*}=\operatorname{argmin}_{x} L(x), L(x) \text { is a non-convex function. }
$$

$$
\text { For example: } L(x)=\frac{1}{n} \sum_{i} l_{i}(x)
$$

Why non-gradient method?

- Gradient is hard to calculate
- Objective function is non-smooth
- Flat local minimum

It is hard for gradient based method to escape from flat local minimum

$$
\begin{gathered}
\text { GD: } X^{\prime}(t)=-\nabla L(X(t)) \\
\text { SGD: } d X_{t}=-\nabla L\left(X_{t}\right)+\sqrt{\frac{1}{\beta}} d B_{t} \\
\text { p.d.f of SGD: } \partial_{t} p(t, x)=\nabla \cdot\left[\nabla L(x) p+\frac{2}{\beta} \nabla p\right] \\
p^{\infty}(x)=\frac{1}{Z} e^{-\frac{\beta}{2} L(x)}
\end{gathered}
$$

[Z-Dai, 18], [Jastrzebski-Bengio, 18]

$$
\frac{\mathbb{P}\left(\text { converge to } X^{1}\right)}{\mathbb{P}\left(\text { converge to } X^{2}\right)}=\sqrt{\frac{\operatorname{det} H_{2}}{\operatorname{det} H_{1}}} e^{\frac{\beta}{2}\left(L_{2}-L_{1}\right)}
$$

When $\frac{\sqrt{\operatorname{det} H_{1}}}{\sqrt{\operatorname{det} H_{2}}}<\frac{e^{\frac{\beta}{2} L_{1}}}{e^{\frac{\beta}{2} L_{2}}}$, SGD is more likely to converge to the flat local minimum.

It is hard for gradient based method to escape from flat local minimum

Example:

$$
\begin{aligned}
& \ell\left(x, \hat{x}_{i}\right)=e^{\sin \left(2 x^{2}\right)}+\frac{1}{10}\left(x-\hat{x}_{i}-\frac{\pi}{2}\right)^{2}, \quad \hat{x}_{i} \sim N(0,0.1) \\
& L(x)=\frac{1}{n} \sum_{i} \ell\left(x, \hat{x}_{i}\right)
\end{aligned}
$$

Success rate for SGD to find the correct global minimum is 18\%

Motivations

Numerical experiments

Related Work [Pinnau-Totzeck-Tse-Martin, 17]

For $j=1, \cdots, N$
$d X^{j}=-\lambda\left(X^{j}-\bar{x}^{*}\right) H^{\epsilon}\left(L\left(X^{j}\right)-L\left(\bar{x}^{*}\right)\right) d t+\sigma\left|X^{j}-\bar{x}^{*}\right| d W^{j}$
where $\bar{x}^{*}=\frac{1}{\sum_{j=1}^{N} e^{-\beta L\left(X^{j}\right)}} \sum_{j=1}^{N} X^{j} e^{-\beta L\left(X^{j}\right)}$.

Relax to their weighted average, in the meantime, explore their surrounding environment.

Require $\lambda \sim O(d)$ to guarantee the convergence of the method

First improvement

$$
d X^{j}=-\lambda\left(X^{j}-\bar{x}^{*}\right) d t+\sigma \sum_{k=1}^{d}\left(X^{j}-\bar{x}^{*}\right)_{k} d W_{k}^{j} \vec{e}_{k}
$$

component-wise geometric Brownian motion

- Intuitively, now the diffusivity allows the particles to explore each dimension with different rate, so more possible to find the global minimum.

Assume $x^{*}=a$ is a constant.

$$
d X=-\lambda(X-a) d t+\sigma|X-a| d W^{j}
$$

For each dimension \mathbf{i}

By Ito's formula and then take expectation
$d \mathbb{E}\left[(X)_{i}-(a)_{i}\right]^{2}=-2 \lambda \mathbb{E}\left[(X)_{i}-(a)_{i}\right]^{2} d t+\sigma^{2} \mathbb{E}|X-a|^{2} d t$
Sum over all dimension
$\frac{d}{d t} \mathbb{E}|X-a|^{2}=-2 \lambda \mathbb{E}|X-a|^{2}+\sigma^{2} \sum_{i=1}^{d} \mathbb{E}|X-a|^{2}=\left(-2 \lambda+\sigma^{2} d\right) \mathbb{E}|X-a|^{2}$
$2 \lambda>d \sigma^{2}$

$$
d\left[(X)_{i}-(a)_{i}\right]=-\lambda\left[(X)_{i}-(a)_{i}\right] d t+\sigma\left[(X)_{i}-(a)_{i}\right] d\left(W^{j}\right)_{i}
$$

$d \mathbb{E}\left[(X)_{i}-(a)_{i}\right]^{2}=-2 \lambda \mathbb{E}\left[(X)_{i}-(a)_{i}\right]^{2} d t+\sigma^{2}\left[(X)_{i}-(a)_{i}\right]^{2} d t$

$2 \lambda>\sigma^{2}$
[Carrillo-Choi-Totzeck-Tse, 18]

Mean field limit of the continuous model

$$
\begin{gathered}
d X^{j}=-\lambda\left(X^{j}-\bar{x}^{*}\right) d t+\sigma \sum_{k=1}^{d}\left(X^{j}-\bar{x}^{*}\right)_{k} d W_{k}^{j} \vec{e}_{k} \\
\downarrow N \rightarrow \infty \\
d X=-\lambda\left(X-X^{*}\right) d t+\sigma \sum_{i=1}^{d} \vec{e}_{i}\left(X-X^{*}\right)_{i} d W_{i} \\
\text { with } X^{*}=\frac{\mathbb{E}\left(X e^{-\beta L(X)}\right)}{\mathbb{E}\left(e^{-\beta L(X)}\right)} .
\end{gathered}
$$

Theorem: [Carrilo-Jin-Li-Z, 19]

Under some condition on the initial distribution of X and $\lambda, \sigma, X(t) \rightarrow \tilde{x}$ exponentially fast and,

$$
L(\tilde{x}) \leq-\frac{1}{\beta} \log \mathbb{E} e^{-\beta L(X(0))}+\frac{\log 2}{\beta} \leq L\left(x^{*}\right)+O\left(\beta^{-1}\right)
$$

The initial law of X

Numerical method

A gradient-free optimization method

Goal: find $x^{*}=\operatorname{argmin}_{x} L(x)=\operatorname{argmin}_{x} \frac{1}{n} \sum_{i} l_{i}(x)$

Algorithm [Carrillo-Jin-Li-Z-19]

Initially, randomly generate N particles X^{j}, at each step we randomly update M particles.

- Find a weighted average: $\bar{X}^{*}=\frac{1}{\sum_{j=1}^{N} \mu^{j}} \sum_{j=1}^{N} X^{j} \mu^{j}, \mu^{j}=e^{-\beta E(\mathbf{x})}$
- Let X^{j} move towards X^{*} and and explore their neighbor at the same time.

$$
X^{j} \leftarrow X^{j}-\lambda \gamma\left(X^{j}-\bar{X}^{*}\right)+\sigma \sqrt{\gamma} \sum_{i=1}^{d} \vec{e}_{i}\left(X^{j}-\bar{X}^{*}\right)_{i} z_{i}, \quad z_{i} \sim \mathcal{N}(0,1)
$$

Motivations

Numerical experiments

Example:

$$
\begin{aligned}
& \ell\left(x, \hat{x}_{i}\right)=e^{\sin \left(2 x^{2}\right)}+\frac{1}{10}\left(x-\hat{x}_{i}-\frac{\pi}{2}\right)^{2}, \quad \hat{x}_{i} \sim N(0,0.1) \\
& L(x)=\frac{1}{n} \sum_{i} \ell\left(x, \hat{x}_{i}\right)
\end{aligned}
$$

Success rate of our method is 98% !
(with $N=100, M=20$)

$$
L(x)=\frac{1}{d} \sum_{i=1}^{d}\left[\left(x_{i}-B\right)^{2}-10 \cos \left(2 \pi\left(x_{i}-B\right)\right)+10\right]+C
$$

Rastrigin function in $d=20$ with $\beta=30$

TABLE 2. Rastrigin function in $d=20$ with $\alpha=30$.

		N				
x_{*}		50	100	200		
0	success rate	$34 . \%$	61.1%	62.2%		
	$\frac{1}{d} \mathbb{E}\left[\left\\|v_{f}(T)-x_{*}\right\\|^{2}\right]$	$3.12 e^{-1}$	$2.47 e^{-1}$	$2.42 e^{-1}$		
1	success rate	34.5%	57.1%	61.6%		
	$\frac{1}{d} \mathbb{E}\left[\left\\|v_{f}(T)-x_{*}\right\\|^{2}\right]$	$3.09 e^{-1}$	$2.52 e^{-1}$	$0.244 e^{-1}$		
2	success rate	35.5%	54.8%	62.4%		
	$\frac{1}{d} \mathbb{E}\left[\left\\|v_{f}(T)-x_{*}\right\\|^{2}\right]$	$3.06 e^{-1}$	$2.51 e^{-1}$	$2.44 e^{-1}$		

[Pinnau-Totzeck-Tse-Martin, 17]

	$\mathrm{N}=50, \mathrm{M}=40$ $\sigma=5.1$	$\mathrm{N}=100, \mathrm{M}=70$ $\sigma=5.1$	$\mathrm{N}=200, \mathrm{M}=100$ $\sigma=5.1$		
$\mathbf{x}^{*}=0$, success rate	97%	99%	98%		
$\mathbf{x}^{*}=0, \quad \frac{1}{d} \mathbb{E}\left[\left\\|x_{T}^{*}-x^{*}\right\\|^{2}\right]$	$5.6 \mathrm{E}-03$	$5.03 \mathrm{E}-04$	$9.71 \mathrm{E}-04$		
$\mathbf{x}^{*}=1$, success rate	94%	99%	95%		
$\mathbf{x}^{*}=1, \quad \frac{1}{d} \mathbb{E}\left[\left\\|x_{T}^{*}-x^{*}\right\\|^{2}\right]$	$3.9 \mathrm{E}-03$	$4.95 \mathrm{E}-04$	$3 \mathrm{E}-03$		
$\mathbf{x}^{*}=2$, success rate	97%	100%	92%		
$\mathbf{x}^{*}=2, \frac{1}{d} \mathbb{E}\left[\left\\|x_{T}^{*}-x^{*}\right\\|^{2}\right]$	$3.0 \mathrm{E}-03$	$8.06 \mathrm{E}-06$	$4 \mathrm{E}-03$		
Computing time saved	22.03%	30.11%	36.14%		

Learning MNIST data with two layer Neural Network

$$
\begin{gathered}
X \in \mathbb{R}^{7290} \\
\text { Only using } N=100, M=10
\end{gathered}
$$

How parameters affect the performance

Future Directions

- Ongoing work: Constrained optimization problem
- How to choose all the parameters?
- Theory for the numerical method.

