
A consensus-based global
optimization method for high
dimensional machine learning

problems
Yuhua Zhu

Joint work with Jose Carrilo, Shi Jin, Lei Li

Oct 22, 2019

Motivations

The Model and algorithm

Numerical experiments

Motivations

The Model and algorithm

Numerical experiments

Why non-gradient method?

• Gradient is hard to calculate

• Objective function is non-smooth

• Flat local minimum

X1

X2

Goal: find x⇤ = argminx L(x), L(x) is a non-convex function.

For example: L(x) =
1

n

X

i

li(x)

GD: X 0(t) = �rL(X(t))

SGD: dXt = �rL(Xt) +
q

1
� dBt

p.d.f of SGD: @tp(t, x) = r ·

rL(x)p+

2

�
rp

�

p1(x) = 1
Z e�

�
2 L(x)

When

p
detH1p
detH2

<
e

�
2 L1

e
�
2 L2

, SGD is more likely to converge to the flat local

minimum.

X1

X2

It is hard for gradient based method to escape from flat local minimum

>1 <1

 P(converge to X
1)

P(converge to X2)
=

r
detH2

detH1
e

�
2 (L2�L1)

[Z-Dai, 18], [Jastrzebski-Bengio, 18]

It is hard for gradient based method to escape from flat local minimum

Example:
`(x, x̂i) = esin(2x

2) +
1

10
(x� x̂i �

⇡

2
)2, x̂i ⇠ N(0, 0.1)

L(x) =
1

n

X

i

`(x, x̂i)

Success rate for SGD to find the correct global minimum is 18%

Motivations

The Model and algorithm

Numerical experiments

where x̄⇤ =
1

PN
j=1 e

��L(Xj)

NX

j=1

Xje��L(Xj).

dX
j = ��(Xj � x̄

⇤)H✏(L(Xj)� L(x̄⇤)) dt+ �|Xj � x̄
⇤|dW j

For j = 1, · · · , N

Relax to their weighted average, in the meantime, explore their surrounding environment.

X1

X2X3

X4

X5

Related Work [Pinnau-Totzeck-Tse-Martin, 17]

Require � ⇠ O(d) to guarantee the convergence of the method

Bad for high-dimensional problems

First improvement

dXj = ��(Xj � x̄⇤) dt+ �
dX

k=1

(Xj � x̄⇤)kdW
j
k~ek

— Intuitively, now the diffusivity allows the particles to explore each dimension
with different rate, so more possible to find the global minimum.

component-wise geometric Brownian motion

d

dt
E|X � a|2 = �2�E|X � a|2 + �2

dX

i=1

E|X � a|2 = (�2�+ �2d)E|X � a|2.

dX = ��(X � a) dt+ �|X � a|dW j

d[(X)i � (a)i] = ��[(X)i � (a)i] dt+ �|X � a|d(W j)i

dE[(X)i � (a)i]
2 = �2�E[(X)i � (a)i]

2 dt+ �2E|X � a|2dt

[Carrillo-Choi-Totzeck-Tse, 18]

Assume x⇤ = a is a constant.

For each dimension i

By Ito’s formula and
then take expectation

Sum over all dimension

2� > d�2

d[(X)i � (a)i] = ��[(X)i � (a)i] dt+ �[(X)i � (a)i]d(W
j)i

dX = ��(X � a) dt+ �
dX

k=1

(Xj � a)kdW
j
k~ek

dE[(X)i � (a)i]
2 = �2�E[(X)i � (a)i]

2 dt+ �2[(X)i � (a)i]
2dt

d

dt
E|X � a|2 = �2�E|X � a|2 + �2

dX

i=1

E(X � a)2i = (�2�+ �2)E|X � a|2.

2� > �2

Previous model New model

Mean field limit of the continuous model

N ! 1

dX = ��(X �X⇤)dt+ �
dX

i=1

~ei(X �X⇤)idWi

with X⇤ =
E(Xe��L(X))

E(e��L(X))
.

 Under some condition on the initial distribution of X and �,�, X(t) ! x̃

exponentially fast and,

L(x̃) � 1

�
logEe��L(X(0)) +

log 2

�
 L(x⇤) +O(��1)

Theorem: [Carrilo-Jin-Li-Z, 19]

The initial law of X The largeness of �

dXj = ��(Xj � x̄⇤) dt+ �

dX

k=1

(Xj � x̄⇤)kdW
j
k~ek

Numerical method

A gradient-free optimization method

Goal: find x⇤ = argminx L(x) = argminx
1

n

X

i

li(x)

- Calculate L(Xj), j = 1, · · · , N .

- Let Xj move towards X⇤ and and explore their neighbor at the same time.

- Find a weighted average: X̄⇤ =
1

PN
j=1 µ

j

NX

j=1

Xjµj , µj = e��L(Xj)

Algorithm [Carrillo-Jin-Li-Z-19]

L̂(Xj) =

1

m

X

i2b

li(x), b ⇢ {1. · · · , n}.

only for j 2 B ⇢ {1, · · · , N}, |B| = M

Initially, randomly generate N particles Xj , at each step we randomly up-
date M particles.

Xj Xj � ��(Xj � X̄⇤) + �
p
�

dX

i=1

~ei
�
Xj � X̄⇤�

i
zi, zi ⇠ N (0, 1)

O(n)

O(N)

O(nN)

O(1)
O(m)

O(M)

Motivations

The Model and algorithm

Numerical experiments

Example:
`(x, x̂i) = esin(2x

2) +
1

10
(x� x̂i �

⇡

2
)2, x̂i ⇠ N(0, 0.1)

L(x) =
1

n

X

i

`(x, x̂i)

Success rate of our method is 98%!
(with N = 100, M = 20)

Rastrigin function in with

 N = 50, M = 40 N = 100, M = 70 N = 200, M = 100

x* = 0, success rate 97% 99% 98%

x* = 0, 5.6E-03 5.03E-04 9.71E-04

x* = 1, success rate 94% 99% 95%

x* = 1, 3.9E-03 4.95E-04 3E-03

x* = 2, success rate 97% 100% 92%

x* = 2, 3.0E-03 8.06E-06 4E-03

Computing time saved 22.03% 30.11% 36.14%

L(x) =
1

d

dX

i=1

h
(xi �B)2 � 10 cos (2⇡(xi �B)) + 10

i
+ C

[Pinnau-Totzeck-Tse-Martin, 17]

Learning MNIST data with two layer Neural Network

X 2 R7290

Only using N = 100,M = 10

How parameters affect the performance

Future Directions

• Ongoing work: Constrained optimization problem

• How to choose all the parameters?

• Theory for the numerical method.

Thanks!

