A consensus-based global optimization method for high dimensional machine learning problems

Yuhua Zhu

Joint work with Jose Carrilo, Shi Jin, Lei Li

Oct 22, 2019

The Model and algorithm

The Model and algorithm

Goal: find $x^* = \operatorname{argmin}_x L(x), L(x)$ is a non-convex function.

For example:
$$L(x) = \frac{1}{n} \sum_{i} l_i(x)$$

Why non-gradient method?

- Gradient is hard to calculate
- Objective function is non-smooth
- Flat local minimum

It is hard for gradient based method to escape from flat local minimum

It is hard for gradient based method to escape from flat local minimum

Success rate for SGD to find the correct global minimum is 18%

The Model and algorithm

Relax to their weighted average, in the meantime, explore their surrounding environment.

Require $\lambda \sim O(d)$ to guarantee the convergence of the method

Bad for high-dimensional problems

First improvement

 Intuitively, now the diffusivity allows the particles to explore each dimension with different rate, so more possible to find the global minimum.

$$\frac{\operatorname{Previous model}}{\operatorname{Assume} x^* = a \text{ is a constant.}} dX = -\lambda(X - a) dt + \sigma |X - a| dW^j$$

$$dX = -\lambda(X - a) dt + \sigma |X - a| dW^j$$

$$dX = -\lambda(X - a) dt + \sigma \sum_{k=1}^{d} (X^j - a)_k dW_k^j \tilde{e}_k$$

$$dX = -\lambda(X - a) dt + \sigma \sum_{k=1}^{d} (X^j - a)_k dW_k^j \tilde{e}_k$$

$$d[(X)_i - (a)_i] = -\lambda[(X)_i - (a)_i] dt + \sigma |X - a| d(W^j)_i$$

$$d[(X)_i - (a)_i] = -\lambda[(X)_i - (a)_i] dt + \sigma |X - a| d(W^j)_i$$

$$d[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[(X)_i - (a)_i]^2 dt + \sigma^2 \mathbb{E}[X - a]^2 dt$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[(X)_i - (a)_i]^2 dt + \sigma^2 \mathbb{E}[X - a]^2 dt$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[(X)_i - (a)_i]^2 dt + \sigma^2 \mathbb{E}[X - a]^2 dt$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[X - a]^2 - (-2\lambda + \sigma^2 d) \mathbb{E}[X - a]^2$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[X - a]^2 - (-2\lambda + \sigma^2 d) \mathbb{E}[X - a]^2$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[X - a]^2 - (-2\lambda + \sigma^2 d) \mathbb{E}[X - a]^2$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[X - a]^2 - (-2\lambda + \sigma^2 d) \mathbb{E}[X - a]^2$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[X - a]^2 - (-2\lambda + \sigma^2 d) \mathbb{E}[X - a]^2$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[X - a]^2 - (-2\lambda + \sigma^2 d) \mathbb{E}[X - a]^2$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[X - a]^2 - (-2\lambda + \sigma^2 d) \mathbb{E}[X - a]^2$$

$$dE[(X)_i - (a)_i]^2 = -2\lambda \mathbb{E}[X - a]^2 - (-2\lambda + \sigma^2 d) \mathbb{E}[X - a]^2$$

[Carrillo-Choi-Totzeck-Tse, 18]

Mean field limit of the continuous model

$$dX^{j} = -\lambda(X^{j} - \bar{x}^{*}) dt + \sigma \sum_{k=1}^{d} (X^{j} - \bar{x}^{*})_{k} dW_{k}^{j} \vec{e}_{k}$$

$$N \to \infty$$

$$dX = -\lambda(X - X^{*}) dt + \sigma \sum_{i=1}^{d} \vec{e}_{i} (X - X^{*})_{i} dW_{i}$$
with $X^{*} = \frac{\mathbb{E}(Xe^{-\beta L(X)})}{\mathbb{E}(e^{-\beta L(X)})}.$

Theorem: [Carrilo-Jin-Li-Z, 19]

Under some condition on the initial distribution of X and $\lambda, \sigma, X(t) \to \tilde{x}$ exponentially fast and,

$$L(\tilde{x}) \le -\frac{1}{\beta} \log \mathbb{E}e^{-\beta L(X(0))} + \frac{\log 2}{\beta} \le L(x^*) + O(\beta^{-1})$$

Numerical method

A gradient-free optimization method

Goal: find
$$x^* = \operatorname{argmin}_x L(x) = \operatorname{argmin}_x \frac{1}{n} \sum_i l_i(x)$$

Algorithm [Carrillo-Jin-Li-Z-19]

Initially, randomly generate N particles X^j , at each step we randomly update M particles.

- Let X^j move towards X^* and and explore their neighbor at the same time.

$$X^{j} \leftarrow X^{j} - \lambda \gamma (X^{j} - \bar{X}^{*}) + \sigma \sqrt{\gamma} \sum_{i=1}^{d} \vec{e}_{i} \left(X^{j} - \bar{X}^{*} \right)_{i} z_{i}, \quad z_{i} \sim \mathcal{N}(0, 1)$$

The Model and algorithm

Example:

$$L(x) = \frac{1}{d} \sum_{i=1}^{d} \left[(x_i - B)^2 - 10\cos\left(2\pi(x_i - B)\right) + 10 \right] + C$$

Rastrigin function in $\,d=20\,{\rm with}\,\beta=30\,$

	N = 50, M = 40 $\sigma = 5.1$	N = 100, M = 70 $\sigma = 5.1$	N = 200, M = 100 $\sigma = 5.1$
x* = 0, success rate	97%	99%	98%
$\mathbf{x^*} = 0, \frac{1}{d} \mathbb{E} \left[\ x_T^* - x^*\ ^2 \right]$	5.6E-03	5.03E-04	9.71E-04
x [*] = 1, success rate	94%	99%	95%
$\mathbf{x}^* = 1, \frac{1}{d} \mathbb{E} \left[\ x_T^* - x^*\ ^2 \right]$	3.9E-03	4.95E-04	3E-03
x* = 2, success rate	97%	100%	92%
$\mathbf{x^*} = 2, \frac{1}{d} \mathbb{E} \left[\ x_T^* - x^*\ ^2 \right]$	3.0E-03	8.06E-06	4E-03
Computing time saved	22.03%	30.11%	36.14%

TABLE 2. Rastrigin function in d = 20 with $\alpha = 30$.

			N	
x_*		50	100	200
0	success rate	34.%	61.1%	62.2%
	$\frac{1}{d}\mathbb{E}[\ v_f(T) - x_*\ ^2]$	$3.12e^{-1}$	$2.47e^{-1}$	$2.42e^{-1}$
1	success rate	34.5%	57.1%	61.6%
	$\frac{1}{d}\mathbb{E}[\ v_f(T) - x_*\ ^2]$	$3.09e^{-1}$	$2.52e^{-1}$	$0.244e^{-1}$
2	success rate	35.5%	54.8%	62.4%
	$\left \frac{1}{d} \mathbb{E}[\ v_f(T) - x_*\ ^2] \right $	$3.06e^{-1}$	$2.51e^{-1}$	$2.44e^{-1}$

[Pinnau-Totzeck-Tse-Martin, 17]

Learning MNIST data with two layer Neural Network

$$X \in \mathbb{R}^{7290}$$

Only using $N = 100, M = 10$

How parameters affect the performance

Future Directions

- Ongoing work: Constrained optimization problem
- How to choose all the parameters?
- Theory for the numerical method.

